Objectives:

- Define relationships between f(x), f'(x) and f''(x).
- Use information from f(x) to graph f'(x).

What does f(x) tell us about f'(x)?

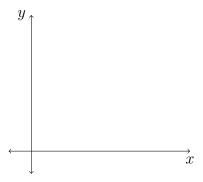
If f(x) is _____ at x = a, then f'(a) is _____.

If f(x) is _____ at x = a, then f'(a) is _____ .

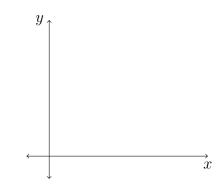
If f(x) has a _____ at x = a, then f'(a) = _____.

Note: If f(x) is discontinuous at a, has a corner/cusp at a, or has a vertical tangent line at a, then f'(a) is undefined.

What does f(x) tell us about f''(x)?



Concave



Concave ____

If f(x) is ______, f'(x) is ______, so f''(x) is ______.

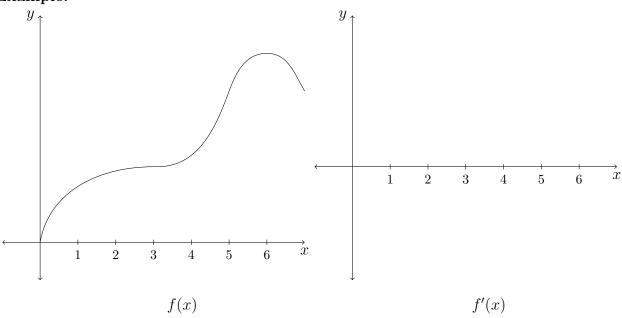
If f(x) is ______, f'(x) is ______, so f''(x) is ______.

Summary

First, look for points where the derivative or second derivative is zero. Then consider where f'(x) and f''(x) are positive or negative, according to the following patterns:

f(x)	
f'(x)	

f(x)	
f'(x)	
f''(x)	



	$x \in (1,3)$	x = 3	$x \in (3,6)$	x = 6	$x \in (6,7)$
f(x)	increasing				
f'(x)	+				

	$x \in (1,3)$	$x \in (3,5)$	$x \in (5,7)$
f(x)	concave down		
f'(x)	decreasing		
f''(x)			

We'll use these basic rules in today's class activity. The solutions to the activity will be posted on the course website - I would recommend adding at least some of those examples to your notes.